

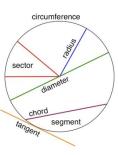
Year 9

PERIMETER AND CIRCUMFERENCE

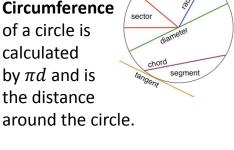
Key Concepts

Parts of a circle

Circumference of a circle is calculated by πd and is the distance

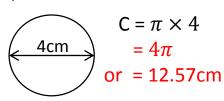


Arc length of a sector is calculated by $\frac{\theta}{360}\pi d$.



Calculate:

a) Circumference



b) **Diameter** when the circumference is 20cm

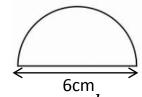
$$C = \pi \times d$$

$$20 = \pi \times d$$

$$\frac{20}{\pi} = d$$
Or 6.37cm

Examples

c) **Perimeter**



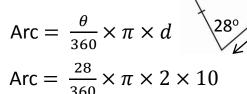
$$P = \frac{\pi \times d}{2} + d$$

$$P = \frac{\pi \times 6}{2} + 6$$

$$P=3\pi+6$$

$$Or = 15.42cm$$

d) Arc length



$$Arc = \frac{28}{360} \times \pi \times 20$$

$$Arc = \frac{14}{9}\pi$$

$$Or = 4.89cm$$

& hegartymaths 534, 535, 537, 538, 541, 544-545

Key Words

Circle

Perimeter

Circumference

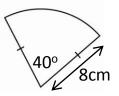
Radius Diameter

Ρi

Arc

Calculate:

- The circumference of a circle with a diameter of 12cm
- The diameter of a circle with a circumference of 30cm
- 3) The perimeter of a semicircle with diameter 15cm
- 4) The arc length of the diagram



Year 9 AREA OF CIRCLES AND PART CIRCLES

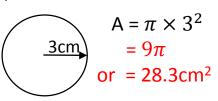
Key Concepts

The **area** of a circle is calculated by πr^2

The **area of a sector** is calculated by $\frac{A}{360}\pi r^2$

Calculate:

a) Area



b) **Radius** when the area is 20cm²

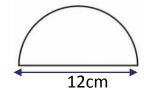
$$A = \pi \times r^{2}$$

$$20 = \pi \times r^{2}$$

$$\frac{20}{\pi} = r^{2}$$
Or 2.52cm

Examples

c) Area



$$P = \frac{\pi \times r^2}{2}$$

$$P = \frac{\pi \times 6^2}{2}$$

$$P = 18\pi$$

$$Or = 56.55 cm^2$$

d) Area of a sector

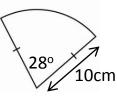
$$Arc = \frac{\theta}{360} \times \pi \times r^2$$

$$Arc = \frac{28}{360} \times \pi \times 10^2$$

$$Arc = \frac{28}{360} \times \pi \times 100$$

Arc =
$$\frac{70}{9}\pi$$

Or = 24.43cm



A hegartymaths

539, 540, 542-543, 546-547

Key Words

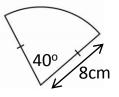
Circle Area Radius

Diameter Pi

Sector

Calculate:

- 1) The area of a circle with a radius of 9cm
- 2) The radius of a circle with an area of 45cm²
- 3) The area of a semicircle with diameter of 16cm
- 4) The area of the sector in the diagram



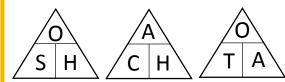
Year 9 PYTHAGORAS AND TRIGONOMETRY

Key Concepts

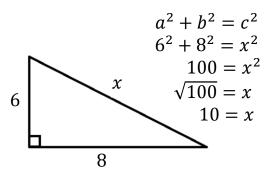
Pythagoras' theorem and basic trigonometry both only work with **right** angled triangles.

Pythagoras' Theorem – used to find a missing length when two sides are known $a^2 + b^2 = c^2$ c is always the hypotenuse (longest side)

Basic trigonometry SOHCAHTOA – used to find a missing side or an angle



Pythagoras' Theorem



$$a^{2} + b^{2} = c^{2}$$

$$y^{2} + 8^{2} = 12^{2}$$

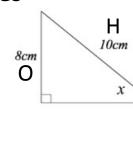
$$y^{2} = 12^{2} - 8^{2}$$

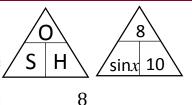
$$y^{2} = 80$$

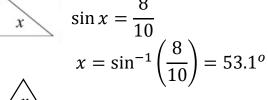
$$y = \sqrt{80}$$

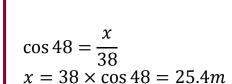
$$y = 8.9$$

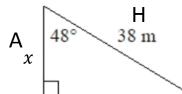
Examples











A hegartymaths

498-499*,* 509-515

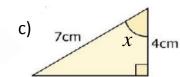
Key Words

Right angled triangle
Hypotenuse
Opposite
Adjacent
Sine
Cosine
Tangent

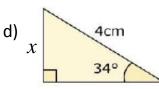
Find the value of *x*.

b)

a) X



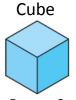
Questions



Year 9 3D SHAPES, CAPACITY AND VOLUME

Key Concept

Cuboid



Faces - 6 Edges - 12

Faces – 6 Edges – 12 Vertices - 8 Vertices - 8

A hegartymaths

Clip Numbers

568-571,

698,699

Hexagonal Prism

Faces - 8 Edges – 18 Vertices - 12

Triangular

Edges - 9 Vertices - 6

Faces – 5

Key Words

Volume: The amount of space that an object occupies.

Capacity: The amount of space that a liquid occupies.

Cuboid: 3D shape with 6 square/rectangular faces.

Vertices: Angular points of shapes.

Face: A surface of a 3D

shape.

Edge: A line which connects two faces on a 3D shape.

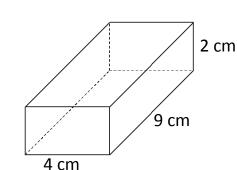
Tip

Remember the units are cubed for volume.

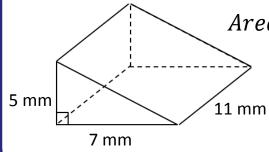
Formula

Cuboid Volume = $l \times w \times h$ Prism Volume = area of cross section \times length

Examples



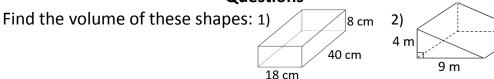
 $Volume = 4 \times 9 \times 2$ $= 72cm^{3}$



Area of triangle = $\frac{5 \times 7}{2}$ $= 17.5mm^2$

> $Volume = 17.5 \times 11$ $= 192.5mm^3$

Questions



z) 762 m³

 $_{2}$ 2) 2260 cm³

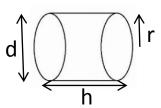
ANSWERS:

Year 9

VOLUME AND SURFACE AREAS OF CYLINDERS

Key Concepts

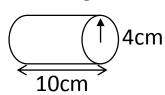
A **cylinder** is a **prism** with the cross section of a circle.



The **volume** of a cylinder is calculated by $\pi r^2 h$ and is the space inside the 3D shape

The **surface area** of a cylinder is calculated by $2\pi r^2 + \pi dh$ and is the total of the areas of all the faces on the shape.

From the diagram calculate:



a) Volume

$$V = \pi \times r^2 \times h$$

$$V = \pi \times 4^2 \times 10$$

$$V = 160\pi$$

$$Or = 502.65cm^3$$

Examples

b) Surface Area – You can use the net of the shape to help you

Area of two circles $= 2 \times \pi \times r^2$

$$= 2 \times \pi \times 4^2$$

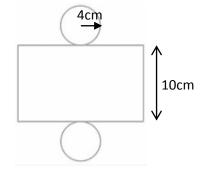
$$=32\pi$$

Area of rectangle

$$= \pi \times d \times h$$

$$=\pi \times 8 \times 10$$

$$=80\pi$$



Surface Area =
$$32\pi + 80\pi$$

= 112π
or = $351.86cm^3$

A hegartymaths

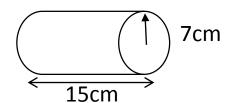
572, 586

Key Words

Cylinder
Surface Area
Radius
Diameter

Pi

Volume Prism Calculate the volume and surface area of this cylinder



Year 9 **BOUNDARIES**

Key Concepts

The boundaries of a number derive from rounding.

E.g. State the boundaries of 360 when it has been rounded to 2 significant figures:

$$355 \le x < 365$$

E.g. State the boundaries of 4.5 when it has been rounded to 2 decimal place:

$$4.45 \le x < 4.55$$

These boundaries can also be called the error interval of a number.

	+	-	×	÷
Upper bound answer	UB ₁ + UB ₂	UB ₁ - LB ₂	$UB_1 \times UB_2$	$UB_1 \div LB_2$
Lower bound answer	LB ₁ + LB ₂	LB ₁ - UB ₂	$LB_1 \times LB_2$	$LB_1 \div UB_2$

A restaurant provides a cuboid stick of butter to each table. The dimensions are 30mm by 30mm by 80mm, correct to the nearest 5mm. Calculate the upper and lower bounds of the volume of the butter.

$$Volume = l \times w \times h$$

Upper bound =
$$32.5 \times 82.5 \times 32.5$$

= $87140.63mm^3$

Lower bound =
$$27.5 \times 77.5 \times 27.5$$

= $58609.38mm^3$

Examples

When completing calculations involving boundaries we are aiming to find the greatest or smallest answer.

$$D = \frac{x}{y}$$
 $x = 99.7$ correct to 1 decimal place.
 $y = 67$ correct to 2 significant figures.
Work out an upper and lower bounds for D .

Upper bound D =
$$\frac{99.75}{66.5}$$
 = 1.5

Lower bound
$$D = \frac{99.65}{67.5} = 1.48$$

A hegartymaths

137-139,

Kev Words

Bound Upper Lower Accuracy Rounding 1) Jada has 100 litres of oil, correct to the nearest litre.

The oil is poured into tins of volume 1.5 litres, correct to one decimal place. Calculate the upper and lower bounds for the number of tins that can be filled.

2) There are 110 identical marbles in a bag. A marble is taken and weighed as 15.6 g to the nearest tenth of a gram. Find the upper and lower bounds for the weight of all the marbles.