

Knowledge Organiser: Representing and Interpreting Data and Scatter Graphs

What you need to know:

Time-series Graphs

Plot the following sales information on the graph below and describe the overall trend:

Year	1999	2000	2001	2002	2003
Sales	118	123	136	128	132

Step 1 – Label the x and y axes, and use an appropriate scale

Try to fill the graph paper

Step 2 – Plot each point onto the graph

Double check what one square represents

Step 3 – Join up each point with a straight line

Visualising a line of best fit through the plotted points can help you to see the overall trend

Step 4 – Identify the overall pattern shown = generally increasing

Histograms with Equal Class Intervals

A group of 32 students were asked to say the 12-times table as fast as possible.

a) Draw a histogram for the following data:

Time, t (s)	Frequency
0< t ≤ 10	1
10< t ≤ 20	2
20< t ≤ 30	8
30< t ≤ 40	12
40< t ≤ 50	6
50< t ≤ 60	3

See Cumulative Frequency, Box Plots, and Histograms for more on drawing histograms

No gaps between bars

 $\frac{\text{Frequency}}{\text{Density}} = \frac{\text{Frequency}}{\text{Class Width}}$

Key Terms:

Discrete data: countable data that can be categorised e.g. Shoe size, eye colour

Continuous data: data that is measured and can take any value e.g. Height, time, temperature

Qualitative data: text-based data that describes something *e.g. colours, race*

Quantitative data: numerical data *e.g.* age, height, temperature

Frequency: the number of occurrences of an event

Extrapolate: to predict values from outside the range of data

Bar Charts

Comparative bar charts show data side by side

Compound bar charts show data stacked

You need to be able to:

- Know what chart to use for different types of data sets
- Draw and interpret all types of bar charts, pie charts, frequency polygons, line graphs, and timeseries graphs
- Recognise simple patterns in graphs and charts (e.g. seasonal patterns)
- Estimate the median from a histogram with equal class intervals
- Compare averages of two distributions
- Predict future values from a timeseries graph

Hegarty maths clip numbers

Bar Charts and Pictograms: 425 - 426

Pie Charts: 427 – 429

Frequency Polygons: 441

Histograms: 442 – 446

Scatter Graphs: 453 – 454

Knowledge Organiser: Representing and Interpreting Data and Scatter Graphs

What you need to know:

Pie Charts

Use the data in the following table to draw a pie chart

ose the data in the following table to draw a pie chart						
House Type	Frequency	Angle				
Detached	18	18 x 5° = 90°				
Semi-detached	30	30 x 5° = 150°				
Terraced	6	6 x 5° = 30°				
Flat	14	14 x 5° = 70°				
Other	4	4 x 5° = 20°				

Finding angles:

Step 1 – Divide 360° by your total frequency to find how many ° represents one house

$$= 360 \div 72 = 5^{\circ}$$

Step 2 – Multiply the frequency for each house type by the ° per house

Total = 72

Drawing the pie chart:

Step 1 – Draw a circle using a compass, and draw a vertical line from the centre to the top

Step 2 – Using a protractor, measure and draw each angle

Step 3 – Label each section of the pie chart

Step 4 – Give your pie chart a suitable title

Types of housing in Showtown

Drawing Frequency Polygons

This table gives information about the speeds of 70 cars.

Speed (s mph)	Frequency (f)	Midpoint
$0 < L \le 10$	14	5
$10 < L \le 20$	18	15
$20 < L \le 30$	26	25
$30 < L \le 40$	12	35

a) Draw a frequency polygon for this information.

Step 1 – Find the midpoint of each class interval
Step 2 – Label your axes and choose an appropriate scale
Step 3 – Plot each point at the midpoint for that interval
Step 4 – Connect each point with a straight line

Do not extend the line beyond the points you have

b) Identify the interval with the median speed

Step 2 – Which bracket

does this car fall into?

Step 1 – Identify the Median car = $71 \div 2$ median car = 35.5

35.5 occurs in the 20<*L*≤30 bracket

Median =
$$\frac{Total\ Frequency+1}{2}$$

Knowledge Organiser: Representing and Interpreting Data and Scatter Graphs

What you need to know:

Scatter Graphs

This scatter graph shows the maximum temperature and the number of hours of sunshine in 14 British towns in one day.

Scatter Graphs - Outliers and Correlation

Identify the coordinates of the outlier.

=(10, 19)

An outlier is a value that doesn't fit the pattern of the data

What type of correlation does the remaining data

show?

= Positive correlation

Scatter Graphs - Correlation and Causation

A student looks at the graph and says "This graph shows that sunshine causes higher temperatures". Is this true? Give a reason.

Correlation does not imply causation. While it may look like variables are related, there may be something else responsible for the data points.

= No, although the graph shows a positive correlation, this does not mean there is a causal link between hours of sunshine and maximum temperature

Scatter Graphs – Explaining Patterns

A weatherman says "Temperatures are higher in towns that have more sunshine". Is this supported by the scatter graph?

= Yes, the majority of points for high temperature appear when there are more hours of sunshine.

Interpolation and Extrapolation

Interpolation – making a prediction of a value that falls within the range of your data. This is more accurate.

Extrapolation – making a prediction of a value that falls outside the range of your data. This is less accurate.

Another town had a maximum temperature of 11°c that day. Use a line of best fit to estimate the hours of sunshine at this town.

Step 1 – Draw a line of best fit

= 9.5 hours

Step 2 – Draw a line along from 11°c and down from the line of best fit

Comment on the reliability of your prediction.

= This is not a reliable estimate because it is extrapolation