
Knowledge Organiser: Real-life Graphs (9a)

What you need to know: Interpret Real-life graphs

The speed of an object can be calculated from the gradient of the graph.

E.g. calculate the speed at which the object travelled between 9am and 11am.

Key Terms:

- Journey
- Distance
- Horizontal
- Vertical
- Axis
- Conversion
- Starting point
- Gradient
- Constant
- Speed
- Represents

Hegarty maths clip numbers

Topic: Interpreting Real-life graphs - 894

Topic: Drawing Real-life Graphs - 895

Key Facts:

Draw and interpret real life graphs, including distance-time and conversion graphs

Understand how the vertical axis represents the distance from starting point.

Understand how the horizontal line on a distance time graph represents an object at rest.

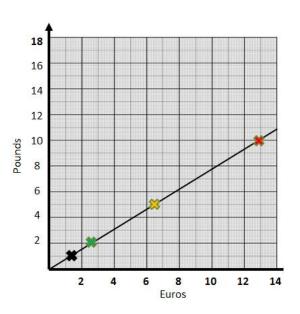
The gradient of the line represents the speed of the journey

Knowledge Organiser: Real-life graphs (9a)

What you need to know:

Drawing a conversion graph

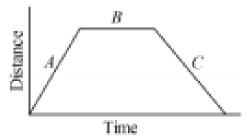
You can plot known conversions on a graph to help you to convert other unknown amounts.


Current exchange rate

£1 = € 1.29

£2 = € 2.58

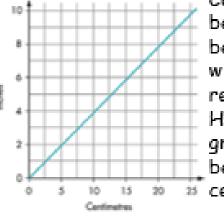
£5 = € 6.45


£ 10 = € 12.90

<u>Example 3:</u> Interpreting a conversion graph Can you use the graph to convert 10 Pounds into Euros?

Answer = €12.90

Example 2: Using the graph below, identify what A, B and C mean in terms of travel.



A = steady speed,

B = no movement,

C = steady speed back to start

Using a conversion graph

Conversion graphs can
be used to convert
between any 2 units
which have a linear
relationship,
Here, you can use the
graph to convert
between inches and
centimetres