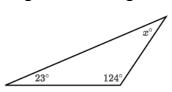

Knowledge Organiser: Angles, Polygons and Parallel lines

What you need to know:

Straight lines and around a point



Add the angles we know together first then subtract from 180°.

Triangles

Angles in a triangle add up to 180°.

To calculate x:

2 sides are equal and the 2 angles at the end of the sides.

This means that these

180° - 30° = 150°

Add the angles we know

together first then

subtract from 360°.

150° ÷ 2 = 75°

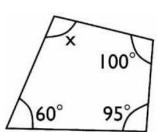
To calculate x:

Divide by 2 to calculate I angle.

Add the angles

we know

together first


then subtract

from 360°.

Subtract from 180°.

Quadrilaterals

Angles in a quadrilateral add up to 360°.

To calculate x:

60° + 100° + 95° = 255°

Key Terms:

Quadrilateral: A 2D shape with four sides.

Polygon: A 2D shape.

Regular Polygon: A shape where all of the sides are equal length.

Irregular Polygon: A shape where all of the sides are not equal lengths. **Isosceles:** A triangle that has 2 equal

sides and 2 equal angles.

Equilateral: A triangle where all of the sides and angles are equal.

Vertically opposite: The 2 angles that are facing each other are equal where 2 lines cross.

Parallel: Always the same distance apart and never toughing.

Perpendicular: At right angles (90°). **Interior angle:** An angle inside a

shape.

Exterior angle: The angle between any side of a shape, and a line extended from the next side.

Hegarty maths clip numbers

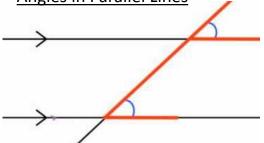
Angle facts: 477 - 480, 485 - 491, 812 - 814

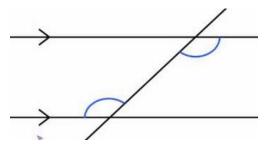
hegartymaths

Parallel lines: 481 - 483

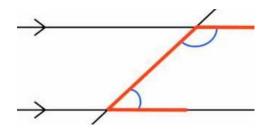
Interior and Exterior: 560 - 564

You need to be able to:

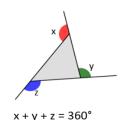

- Classify quadrilaterals and triangles by their geometric properties.
- Calculate missing angles in triangles, quadrilaterals and using the rules of vertically opposite angles.
- Calculate missing angles inside parallel lines and explain using the correct terminology.
- Combine basic angle facts with parallel line facts to solve problems.
- Calculate interior and exterior angles of a regular or irregular polygon and calculate the number of sides.

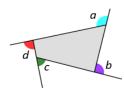

Knowledge Organiser: Angles, Polygons and Parallel lines

What you need to know:


Angles in Parallel Lines

Corresponding angles are equal.


Alternate angles are equal.



Co-interior angles sum to 180°.

Exterior Angles in Polygons

Exterior angles in a polygon sum to 360°.

 $a + b + c + d = 360^{\circ}$

The exterior angle of a regular polygon is calculated using: $360 \div n$ n = number of sides

Interior Angles in Regular Polygons

Calculate the size of one interior angle in a pentagon.

Step 1 – Calculate the sum of the interior angles

Sum of interior angles =
$$(n - 2) \times 180$$

n = number of sides

Step 2 – Divide by the number of sides

$$(5-2) \times 180 = 540$$

$$540 \div 5 = 108^{\circ}$$

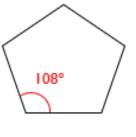
Angles in Polygons

Sometimes you are asked to calculate the number of sides a regular polygon has.

Step 1 – Calculate the size of the exterior angle

Interior angle + exterior angle = 180°

Step 2 – Divide by the number of sides
$$(5-2) \times 180 = 540$$



Interior and exterior angles key formulae:

Sum of the Exterior Angles Always 360°!

Each Interior Angle
$$\frac{180(n-2)}{n}$$

Each Exterior Angle 36

Interior and