

Knowledge Organiser PERCENTAGE CHANGE AND REVERSE PERCENTAGES

Key Concepts Calculating percentages of an amount without a calculator:		Percentage change: A dress is reduced in price by 35% from £80. What is it's new price ?		Reverse percentages: This is when we are trying to find out the original amount. A pair of trainers cost £35 in a sale. If there was 20% off, what was	
10% = divide the value by 10 1% = divide the value by 100 Calculating percentages of an amount with a calculator:		Value $\times (1 - percentage as a decimal)$ = 80 $\times (1 - 0.35)$ = £52		the original price of the trainers? $Value \div (1 - 0.20)$ $= 35 \div 0.8$	
Amount × percentage as a decimal Calculating percentage increase/decrease: Amount × (1 ± percentage		A house price appreciates by 8% in a year. It originally costs £120,000, what is the new value of the house? $Value \times (1 + percentage as a decimal)$ = 120,000 × (1 + 0.08)		= £43.75 A vintage car has increased in value by 5%, it is now worth £55,000. What was it worth originally ? Value $\div (1 + 0.05)$ = 55,000 $\div 1.05$	
as a declinaly		= £129,600		= £52,380.95	Examples
A hegartymaths 88-92, 96	1a) Decrease b) Increase 2) A camera 3) The cost o	e £500 by 6% e 70 by 8.5% costs £180 in a 10% sale of a holiday, including VA	e. What was the pre-sale pr T at 20% is £540. What is th סקד (ג 007 ק נק כ	ice he pre-VAT price?	

per year.

Knowledge Organiser COMPOUND INTEREST AND DEPRECIATION

Key Concepts Examples We use **multipliers** to increase and decrease an amount by a particular percentage. **Compound depreciation: Compound interest:** Percentage increase: Joe invest £400 into a bank account that The original value of a car is £5000. The value of *Value* \times (1 + *percentage* as a *decimal*) the car **depreciates** at a rate of 7.5% per annum. pays 3% compound interest per annum. Percentage decrease: Calculate the value of the car after 3 years. Calculate how much money will be in the *Value* \times (1 – *percentage* as a decimal) bank account after 4 years. *Value* \times (1 – *percentage as a decimal*)^{*years*} **Appreciation** means that the value of something is going $= 5000 \times (1 - 0.075)^3$ Value up or increasing. $\times (1 + percentage as a decimal)^{years}$ $= 5000 \times (0.925)^3$ $=400 \times (1+0.03)^4$ = £3957.27**Depreciation** means that the value of something is going down or reducing. $=400 \times (1.03)^4$ $= \pm 450.20$ Per annum is often used in monetary questions meaning

Key Words

Jane invests £670 into a bank account that pays out 4% compound interest per annum. How 1) much will be in the bank account after 2 years?

A house has decreased in value by 3% for the past 4 years. If originally it was worth £180,000, how much is it worth now?

TT.2256213 (2 T0.4273 (1 A 2892271)