

Year 9 **TYPES OF DATA AND GRAPHS**

Key Concepts

Qualitative data: data collected that is described in words not numbers. e.g. race, hair colour, ethnicity.

Quantitative data: this is the collection of numerical data that is either discrete or continuous.

Discrete data: numerical data that is categorised into a finite number of classifications.

e.g. number of siblings in a family, shoe size. .

Continuous data: numerical data that can take any value. This data is usually measured on a large number scale. e.g. height, weight, time, capacity.

₽ hegartymaths

425,426,427, 430-433,442

Comparative bar charts Comparison between various cars Speed User Rating Milage Safety

Line graphs

22

Key Words

Data

Discrete

Continuous

Qualitative Quantitative

Graph

Examples

Pictograms Monday Tuesda Thursday

Sunday

What types of data is each of the following?

- Eye colour 1)
- 2) Time it takes to run 100m
- Length of a car (to the nearest cm) 4)

= 6 cupcakes

- 5) Number of pets a person owns
- 3) Number of goals scored in a match

5) Discrete, quantitative 4) Continuous, quantitative 3) Discrete, quantitative avitetitations, quantitative ANSWERS: 1) Qualitative

Year 9 AVERAGES FROM A TABLE

Key Concepts

Modal class (mode)

Group with the highest frequency.

Median group

The median lies in the group which holds the $\frac{total frequency+1}{2}$ position. Once identified, use the cumulative frequency to identify which group the median belongs from the table.

Estimate the mean

For grouped data, the mean can only be an estimate as we do not know the exact values in each group. To estimate, we use the midpoints of each group and to calculate the mean we find $\frac{total fx}{total f}$.

Length (L cm)	Frequency (f)	Midpoint (x)	fx
$0 < L \leq 10$	10	5	10 × 5 = 50
$10 < L \le 20$	15	15	15 × 15 = 225
$20 < L \le 30$	23	25	23 × 25 = 575
$30 < L \le 40$	7	35	7 × 35 = 245
Total	55		1095

Examples

a) Estimate the mean of this data.
 step 1: calculate the total frequency
 step 2: find the midpoint of each group
 step 3: calculate f × x
 step 4: calculate the mean shown below

 $\frac{Total fx}{Total f} = \frac{1095}{55} = 19.9 \text{cm}$

- b) Identify the modal class from this data set. " the group that has the highest frequency " Modal class is $20 < x \le 30$
- c) Identify the group in which the median would lie. Median = $\frac{Total frequency+1}{2} = \frac{56}{2} = 28th value$
 - *" add the frequency column until you reach the 28*th value " Median is the in group $20 < x \le 30$

41	4-418	

Key Words

Midpoint

Mean

Median Modal

₽ hegartymaths

Cost (£C)	Frequency	Midpoint	
$0 < C \leq 4$	2		
$4 < C \leq 8$	3		
$8 < C \leq 12$	5		
$12 < C \leq 16$	12		
$16 < C \le 20$	3		

From the data:

- a) Identify the modal class.
- b) Identify the group which holds the median.
- c) Estimate the mean.

ANSWERS: a) $12 < C \le 16$ b) $12 < C \le 16$ b) $12 < C \le 16$ c) $12^{67+1} = 13^{65}$ value is in the group $12 < C \le 16$ c) $22^{44} = 13^{64}$

Year 9 PIE CHARTS AND SCATTER-GRAPHS

14

Examples

A scatter-graph is drawn to

between the engine size of a

car and how far it can travel.

show the relationship

Key Concepts

Pie charts use angles to represent, proportionally, the quantity of each group involved.

Ham

Pineapple

Peppers

Year 9 TWO WAY TABLES AND STEM AND LEAF

Examples

Stem and leaf diagrams

Phone Battery Comparison

LEAF STEM LEAF

"Brand B"

"Brand A"

Key Concepts

A **two way table** is used to represent categorised data.

A **stem and leaf diagram** orders large data sets. It can be used to calculate the median.

Total

This **two way table** gives

travelled to school.

Walk

information on how 100 students

Car

Other

Year 9 ENLARGEMENT

Key Concepts

An **enlargement** changes the size of an image using a scale factor from a given point.

A **positive scale factor** will increase the size of an image.

A **fractional scale factor** will reduce the size of an image.

A **negative scale factor** will place the image on the opposite side of the centre of enlargement, with the image inverted. Enlarge shape A by scale factor 2 from point P.

Examples

Enlarge by scale factor $\frac{1}{2}$ from point P.

Enlarge by scale factor -2 from (0,0).

A hegartymaths

637,638,650, 642-645, 651 Key Words Enlargement Scale factor Centre Positive Negative Describe the **single** transformation you see on each coordinate grid from A to B:

ANSWERS: a) enlarge, centre (-4,2) scale factor 2 b) enlarge, centre (1,-2) scale factor $\frac{1}{2}$ c) enlarge, centre (0,1) scale factor -3 c) enlarge, centre (0,1) scale factor -3

Year 9 PERCENTAGES

Key Concepts	Percentage change:		Reverse percentages: This is wh	en we are trying to
Calculating percentages of an amount without a calculator:	A dress is reduced in price by 35% from £80. What is it's new price ? Value × (1 – percentage as a decimal)		find out the original amount. A pair of trainers cost £35 in a sale. If there was 20%	
10% = divide the value by 10 1% = divide the value by 100			off, what was the original price of the trainers?	
Calculating percentages of an amount with a calculator:	$= 80 \times (1 - 0.35)$ = £52		<i>Value</i> ÷ (1 − 0.20) = 35 ÷ 0.8 = £43.75	
Amount × percentage as a decimal	A house price appreciates by 8% in a year. It originally costs £120,000, what is the new value of the house?		A vintage car has increased in value by 5%, it is now	
Calculating percentage increase/decrease:	Value $\times (1 + perc$	centage as a decimal)	<i>Value</i> \div (1 + 0.05)	i tir onginany :
Amount × (1 ± percentage as a decimal)	$= 120,000 \times (1 + 0)$ = £129,600	0.08)	= 55,000 ÷ 1.05 = £52,380.95	Examples
A hegartymaths 88-92, 96	Key Words Percent Increase/decrease Reverse Multiplier Inverse	 1a) Decrease £500 by (b) Increase 70 by 8.5 2) A camera costs £180 3) The cost of a holiday price? 	6% %) in a 10% sale . What was the pre y, including VAT at 20% is £540. W	- sale price /hat is the pre-VAT
) E75.95 2) E200 3) E450	d 0743 (61 A 283W2NA

Pre ange Academy Were Traver Traver Brefer for Breath are	Year 9 RATIO AND DIRECT PROPORTION					
Key Concepts To calculate the value for a single item we can use the unitary method.	If 20 apples weig 28 apples weigh 600 ÷ 5 = 120g	gh 600g. How much wou n? weight of 4 apples	ld	Examples	The recipe show ingredients need 10 Flapjacks. How much of ea needed to make	vs the ded to make ach will be 25 flapjacks?
When working with best value in monetary terms we use: Price per unit = $\frac{price}{quantity}$	7 × 4 = 28 apples Box A has 8 fish f Box B has 20 fish Which box is the	s 7 × 120 = 840g fingers costing £1.40. fingers costing £ 3.40. better value?		Ingredients for 10 Flapjacks 80 g rolled oats 60 g butter 30 m/ golden syrup	Method 1: Unitary 80 ÷ 10 = 8 8 × 25 = 200g 60 ÷ 10 = 6	$30 \div 10 = 3$ $3 \times 25 = 75g$ $36 \div 10 = 3.6$
In recipe terms we use: $Weight per unit$ $= \frac{weight}{avantity}$	Therefore Box B	$A = \frac{\pounds 1.40}{8} \qquad B = \frac{\pounds 3.40}{20}$ $= \pounds 0.175 \qquad = \pounds 0.17$ B is better value as each for	fish	36 g light brown sugar	$6 \times 25 = 150g$ Method 2: 5 flapja $80 \div 2 = 40$ $40 \times 5 = 200g$ $60 \div 2 = 30$ $20 \times 5 = 150g$	3.6 × 25 = 90g 30 ÷ 2 = 15 15 × 5 = 75g 36 ÷ 2 = 18 18 × 5 = 90g
k hegartymaths 335-337	Key Words Unitary Best Value Proportion Quantity	Ingredients to make 16 gingerbread men 180 g flour 40 g ginger 110 g butter 30 g sugar	1) How will we to make gingerb men?	2) Packet A F much Packet B F need Which is 24 read 3) If 15 oran oranges weig	as 10 toilet rolls cos has 12 toilet rolls cos better value for mor ges weigh 300g. What gh?	ting £3.50. ting £3.60. ney? at will 25

Year 9 **DIRECT AND INVERSE PROPORTION**

Key Concepts

Variables are **directly** proportional when the ratio is constant between the quantities.

Variables are **inversely** proportional when one quantity increases in proportion to the other decreasing.

A hegartymaths

339-341

Key Words Direct Inverse Proportion Divide

Multiply Constant

Direct proportion:

32

20

From A to B we will multiply by $\frac{5}{8}$.

From B to A we will divide by $\frac{5}{8}$.

Ratio constant: $20 \div 32 = \frac{5}{9}$

Ρ

30

56

35

20

R

Value of A

Value of B

Complete each table: 1) Direct proportion

Value of A	5	Р	22
Value of B	9	28.8	Q

Examples

ANSWERS 1) P = 16, Q = 39.6 2) P = 12, Q = 2