Year 8 Knowledge Organiser: Data Representation

What is Binary?

Binary is a number system that only uses two digits: 1 and 0. All information that is processed by a computer is in the form of a sequence of 1s and 0s. Therefore, all data that we want a computer to process needs to be converted into binary.

<u>Hexadecimal</u>: Hexadecimal (or hex) is a base 16 system used to simplify how binary is represented. A hex digit can be any of the following 16 digits:

0123456789 ABCDEF. Each hex digit reflects a 4-bit binary sequence.

Hexadecimal	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Ε	F
Denary	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Convert Denary and 8 bit Binary into Hexadecimal

Example: convert the Denary number 165 into hexadecimal.

1. Create a binary table:

128	64	32	16	8	4	2	1	Answer
								165

Place the number 1 under each number you need to make up 165 and a 0 under those not used.

128	64	32	16	8	4	2	1	Answer
1	0	1	0	0	1	0	1	165

Split the number into two nibbles:

Answer	1	2	4	8	1	2	4	8
165	1	2	4	8	16	32	64	128
165	1	0	1	0	0	1	0	1

 Add up the nibbles separately. In this example, the first nibble adds up to 10, which in Hex is represented by the character A and the second adds up to 5 which means that 165 in Hex is A5.

Answe	1	2	4	8	1	2	4	8
165	1	2	4	8	16	32	64	128
A E	1	0	1	0	0	1	0	1
A5		5				4	-	

ASCII vs Unicode

100	A3CII VS OIIICOGE						
	Advantages	Disadvantages					
ASCII	Only uses 7 bits to store a character, meaning less memory is used.	Limited to 128 different characters.					
Unicode	Uses up to 32 bits per character meaning it can store a wider range of language characters.	More bits per character means more memory is used.					

Binary Addition

Binary addition involves adding two or more binary numbers together.

When adding two numbers, you will have the following possible outcomes:

$$0+0=0$$

$$0+1=1$$

When adding binary numbers, do so right to

Example: add 0100 and 0101

1 st num	0	1	0	0	
2 nd num	0	1	0	1	+
Carried	1				
Answer	1	1	0	1	=

0 + 0 = 0

1 + 1 = 11, so the one is carried

$$0 + 0 + 1 = 1$$

Therefore, the answer is 1101

Overflow Error: An overflow error occurs when the largest number that a CPU register can hold is exceeded.

Images

Pixel: A single point in an image. **Resolution:** The number of pixels that make up an image e.g. 800 x 600 **Colour Depth:** The number of bits used for each colour. E.g. 8 bit colour and 24 bit 'True Colour'.